About | People | Research | Events | Join Us | Contact | 中文版 
 

JHEP 07, 090 (2020)                      arXiv link

Holographic complexity bounds

Hai-Shan Liu1,2, H. Lü1, Liang Ma1 & Wen-Di Tan1

1 Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, 300350, China

2 Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, Hangzhou, 310023, China

ABSTRACT

We study the action growth rate in the Wheeler-DeWitt (WDW) patch for a variety of D ≥ 4 black holes in Einstein gravity that are asymptotic to the anti-de Sitter spacetime, with spherical, toric and hyperbolic horizons, corresponding to the topological parameter k = 1, 0, −1 respectively. We find a lower bound inequality  for k = 0, 1, where C is some order-one numerical constant. The lowest number in our examples is C = (D − 3)/(D − 2). We also find that the quantity   is greater than, equal to, or less than zero, for k = 1, 0, −1 respectively. For black holes with two horizons, ∆Vth =     , i.e. the difference between the thermodynamical volumes of the outer and inner horizons. For black holes with only one horizon, we introduce a new concept of the volume   of the black hole singularity, and define  . The volume   vanishes for the Schwarzschild black hole, but in general it can be positive, negative or even divergent. For black holes with single horizon, we find a relation between  and  , which implies that the holographic complexity preserves the Lloyd’s bound for positive or vanishing  , but the bound is violated when   becomes negative. We also find explicit black hole examples where   and hence   are divergent.

关闭窗口

天津大学理学院 量子交叉研究中心   地址:天津津南区 雅观路135号 天津大学北洋园校区32楼146 
Center for Joint Quantum Studies, School of Science, Tianjin University     Address : Yaguan Road 135, Jinnan District, 300350 Tianjin, P. R. China