报告题目 :自旋轨道力矩磁性隧道结的物理、材料和器件应用
报告人: 万蔡华 副研究员(中国科学院物理研究所)
报告时间:2024年5月31日(星期五)10:00-11:00
报告地点:北洋园校区 49 教 410 室
报告摘要:
Such artificial intelligence as generative neuron networks are booming, which allows spintronics as a spring of randomness to have immense chances to apply for. Based on the studies on the field-free spin-orbit torque (SOT) effect [1-3] and successful development of high-performance SOT-magnetic tunnel junctions (MTJ) [4-5], we have been investigating applicability of SOT-MTJ as stochastic samplers in stochastic neuron networks [6, 7] and stochastic computing such as the restricted Boltzmann machines (RBM) prevalent in unsupervised learning and combinational problem solvers. Their works show SOT-MTJs well match the needs of RBM nodes, enabling the SOT-MTJ-sampled RBM to achieve handwritten and spoken digits recognition, generation and crossmodal learnings [8]. Their works clearly demonstrate spintronic devices ready for developing hardware tailored for stochastic networks and also open a promising outlet for spintronics, especially, SOT devices.
报告人简介:
中国科学院物理研究所副研究员, 2007 年毕业于浙江大学; 2012 年获清华大学博士学位; 2012-2016 年在中科院物理所从事博士后研究工作; 2016 年在中科物理所任助研、副研至今。主要从事自旋电子学领域的研究工作,研究兴趣主要集中在自旋轨道电子学、磁子电子学和自旋热电子学等凝聚态磁学领域和磁随机存储器、自旋逻辑等自旋电子器件研发领域,已在 Nature、 Nature Electronics、Nature Communications、 Science Advances、 Phys. Rev. Lett.、 Advanced Materials、Nano Letters等杂志上发表相关 SCI 论文 100 余篇,申请和获得中国发明专利 6 项,授权美国发明专利 1 项,获得中国科学院青年创新促进会项目资助。现已承担自然科学基金项目两项,以项目骨干参与科技部国家重点研发项目三项。
参考文献:
[1] X.Wang, CHW, X.F.Han, et al. Adv. Mater. 30 (2018) 1801318;
[2] W.J.Kong, CHW, X.F.Han, et al. Nat. Communi. 10 (2019) 233;
[3] W.Q.He, CHW, X.F.Han, et al. Nano Lett. 22 (2022) 6857-6865;
[4] W.J.Kong, CHW, X.F.Han, et al. APL 116 (2020) 162401;
[5] M.K.Zhao, CHW, X.F.Han, et al. APL 120 (2022) 182405;
[6] X.H.Li, CHW, X.F.Han, et al. APL 123, 142403 (2023);
[7] R.Zhang, CHW, X.F.Han, et al. Adv. Sci. (2024) 2402182;
[8] X.H.Li, CHW, X.F.Han, et al. Nano Lett. 24 (2024) 5420-5428.