报告题目: Lefschetz Thimble Path Integral and its Application to Spin-Foam Model
报 告 人: 黄子鬯 博士(复旦大学)
报告时间:2021 年 4 月 1 日( 周四 )15 : 30
报告地点:在线报告( 腾讯会议 ID : 375 3347 0839 )
报告摘要:The numerical sign problem is known as the problem of evaluating the high oscillatory functions by numerical method. In many physics problems involving complex valued actions, the sign problem prevents people from using the conventional Monte Carlo method to numerically evaluate the expectation values of the observables. Many recent progresses suggest to apply the Picard-Lefschetz theory to cure the sign problem. In my work, an algorithm combining the Lefschetz thimble method and Differential Evolution Adaptive Metropolis (DREAM) algorithm is proposed to compute the expectation values of any observables in any system suffering from the sign problem. In particular, this algorithm is applied to compute the spin foam propagator, which is a 2-point correlation function introduce in the Loop Quantum Gravity (LQG) theory, and we hope this algorithm can have broader applications in lattice QCD, Non-Hermitian system, gauge theory with theta- term, etc.
报告人简介:现为复旦大学博士后科研人员。黄子鬯于2013年毕业于北京师范大学物理系,后于2014年在法国Aix-Marseille University获得硕士学位,于2019年在美国Florida Atlantic University获得博士学位后于复旦大学任博士后至今。主要从事圈量子引力,量子计算, 数值计算等相关方面的工作。
视频链接:
https://www.bilibili.com/video/BV1yK4y1P7uP